Solid Phase Microbial Fermentation of Anabolic Steroid, Dihydrotestosterone with Ascomycete Fungus Fusarium Oxysporum
نویسندگان
چکیده
Objective: Microbial catalysis is used in the commercial production of many bioactive steroids. Solid phase microbial fermentation of anabolic steroid, dihydrotestosterone (DHT, 1), was carried out with ascomycete fungal strain Fusarium oxysporum (NRRL-1392). Methods: Sabouraud-4% glucose-agar was used to cultivate the fungal cultures as solid phase medium. Substrate 1 was incubated with Fusarium oxysporum (NRRL-1392) for 8 days. Microbial transformed metabolites were purified by using column chromatographic technique. Results: Ascomycete fungal strain Fusarium oxysporum (NRRL-1392), transformed dihydrotestosterone (1) to four oxidative metabolites 2-5 using solid phase microbial transformation metod. During biotransformation process the hydroxy group was incorporated in inactivated methine carbon atoms at C-7 and C-11 positions. Their structures were elucidated by means of a homo and heteronuclear 2D NMR and by HREI-MS techniques as 17βhydroxyandrosta-1, 4-dien-3-one 2, androsta-1, 4-diene-3, 17-dione 3, 7α, 17β-dihydroxyandrosta-1, 4-dien-3-one (4), and 11α-hydroxyandrosta-1, 4diene-3, 17-dione 5. The relative stereochemistry of newly incorporated hydroxy groups were deduced by 2D NOESY experiment. Conclusion: In conclusion, microbial biocatalysis is an attractive alternative tool for the preparation of new bioactive steroids, which might be difficult to prepare by conventional chemical routes. Furthermore, microbial-catalyzed biotransformations can produce commercially valuable steroidal pharmaceuticals for the pharmaceutical industry.
منابع مشابه
A Novel Approach for Microbial Synthesis of Enantiomerically Pure Whisky Lactones Based on Solid-State Fermentation.
In this study, solid-state fermentation (SSF) was proposed as an alternative approach to obtain optically pure forms of one of the most common aroma compounds, whisky lactone. Filamentous fungi were used for enantioselective hydrolysis of a racemate of trans and cis whisky lactones, utilizing rapeseed cake as a growth medium. Among the tested fungi, Fusarium oxysporum AM13 and Papularia rosea A...
متن کاملThe rhizosphere microbial community in a multiple parallel mineralization system suppresses the pathogenic fungus Fusarium oxysporum
The rhizosphere microbial community in a hydroponics system with multiple parallel mineralization (MPM) can potentially suppress root-borne diseases. This study focused on revealing the biological nature of the suppression against Fusarium wilt disease, which is caused by the fungus Fusarium oxysporum, and describing the factors that may influence the fungal pathogen in the MPM system. We demon...
متن کاملInsights from the Fungus Fusarium oxysporum Point to High Affinity Glucose Transporters as Targets for Enhancing Ethanol Production from Lignocellulose
Ethanol is the most-widely used biofuel in the world today. Lignocellulosic plant biomass derived from agricultural residue can be converted to ethanol via microbial bioprocessing. Fungi such as Fusarium oxysporum can simultaneously saccharify straw to sugars and ferment sugars to ethanol. But there are many bottlenecks that need to be overcome to increase the efficacy of microbial production o...
متن کاملEthanol effect on metabolic activity of the ethalogenic fungus Fusarium oxysporum
BACKGROUND Fusarium oxysporum is a filamentous fungus which has attracted a lot of scientific interest not only due to its ability to produce a variety of lignocellulolytic enzymes, but also because it is able to ferment both hexoses and pentoses to ethanol. Although this fungus has been studied a lot as a cell factory, regarding applications for the production of bioethanol and other high adde...
متن کاملSilver nanoparticle production by the fungus Fusarium oxysporum: nanoparticle characterisation and analysis of antifungal activity against pathogenic yeasts
The microbial synthesis of nanoparticles is a green chemistry approach that combines nanotechnology and microbial biotechnology. The aim of this study was to obtain silver nanoparticles (SNPs) using aqueous extract from the filamentous fungus Fusarium oxysporum as an alternative to chemical procedures and to evaluate its antifungal activity. SNPs production increased in a concentration-dependen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015